3.616 \(\int \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=229 \[ -\frac{\sqrt{-b+i a} (-B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{\sqrt{b+i a} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{2 \sqrt{b} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d} \]

[Out]

-((Sqrt[I*a - b]*(I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*
x]]*Sqrt[Tan[c + d*x]])/d) + (2*Sqrt[b]*B*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[
Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (Sqrt[I*a + b]*(I*A + B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt
[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.734432, antiderivative size = 229, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {4241, 3614, 3616, 3615, 93, 203, 206, 3634, 63, 217} \[ -\frac{\sqrt{-b+i a} (-B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{\sqrt{b+i a} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{2 \sqrt{b} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((Sqrt[I*a - b]*(I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*
x]]*Sqrt[Tan[c + d*x]])/d) + (2*Sqrt[b]*B*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[
Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (Sqrt[I*a + b]*(I*A + B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt
[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3614

Int[(Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/Sqrt[(c_.) + (d_.)*t
an[(e_.) + (f_.)*(x_)]], x_Symbol] :> Int[Simp[a*A - b*B + (A*b + a*B)*Tan[e + f*x], x]/(Sqrt[a + b*Tan[e + f*
x]]*Sqrt[c + d*Tan[e + f*x]]), x] + Dist[b*B, Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Ta
n[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^
2 + d^2, 0]

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin{align*} \int \sqrt{\cot (c+d x)} \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx\\ &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{a A-b B+(A b+a B) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx+\left (b B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1+\tan ^2(c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{1}{2} \left ((a-i b) (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{2} \left ((a+i b) (A+i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx+\frac{\left (b B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\left ((a-i b) (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{(1-i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{\left ((a+i b) (A+i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{(1+i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{\left (2 b B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{\left ((a-i b) (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-(i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\left ((a+i b) (A+i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-(-i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\left (2 b B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{i a-b} (i A-B) \tan ^{-1}\left (\frac{\sqrt{i a-b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{2 \sqrt{b} B \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{\sqrt{i a+b} (i A+B) \tanh ^{-1}\left (\frac{\sqrt{i a+b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.763458, size = 256, normalized size = 1.12 \[ \frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left ((-1)^{3/4} \sqrt{-a-i b} (A+i B) \sqrt{a+b \tan (c+d x)} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{-a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )-\sqrt [4]{-1} \sqrt{a-i b} (B+i A) \sqrt{a+b \tan (c+d x)} \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )+2 \sqrt{a} \sqrt{b} B \sqrt{\frac{b \tan (c+d x)}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )\right )}{d \sqrt{a+b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-1)^(3/4)*Sqrt[-a - I*b]*(A + I*B)*ArcTanh[((-1)^(1/4)*Sqrt[-a - I*b]
*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a + b*Tan[c + d*x]] - (-1)^(1/4)*Sqrt[a - I*b]*(I*A + B)*A
rcTanh[((-1)^(1/4)*Sqrt[a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a + b*Tan[c + d*x]] + 2*Sq
rt[a]*Sqrt[b]*B*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a]))/(d*Sqrt[a + b*Tan
[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.621, size = 8336, normalized size = 36.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{b \tan \left (d x + c\right ) + a} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \sqrt{a + b \tan{\left (c + d x \right )}} \sqrt{\cot{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{b \tan \left (d x + c\right ) + a} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)